Uno de los desafíos más importantes de lo que se supone constituirán la nueva generación de redes IP en esta investigación, será la provisión de servicios de multiconferencia multimedia y los diferentes protocolos a emplear. Además de la introducción de nuevos servicios, Con esta idea, aparte de tener que tratar los problemas típicos asociados a los servicios en tiempo real (como la QoS), debemos tener en cuenta la necesidad de buscar mecanismos de señalización y control que permitan un despliegue eficaz de los servicios suplementarios.
Los dos enfoques más prometedores son el conjunto de protocolos que la ITU-T ha desarrollado bajo la denominación de H.323, y la propuesta del lado del IETF: el SIP. Aunque la arquitectura que proponen es muy similar, se pueden encontrar profundas diferencias en su planteamiento. H.323 es la solución más madura, y ha seguido un desarrollo orientado principalmente a la Telefonía IP (TIP), centrándose, por tanto, en la interoperabilidad con la PSTN y el soporte de los servicios suplementarios. SIP se ha desarrollado sin embargo con un objetivo mucho más amplio, centrándose en la provisión del desarrollo de nuevas funcionalidades y servicios que no se vean coartadas en el futuro, es un protocolo pensado para aplicaciones que vayan más allá de la TIP (videoconferencia, streaming de vídeo, mensajería instantánea).
Parece claro que se ve venir un periodo de convivencia de ambas soluciones, de manera que nos encontramos con varias iniciativas conjuntas que persiguen un escenario donde la interoperabilidad constituirá un requisito absolutamente imprescindible; todo pensado en un entorno de Comunicación Universal e independiente del medio o dispositivo que se utilice en cada momento para acceder a los servicios.
El objetivo de la investigación es ofrecer una breve descripción de las características generales, motivación y alcance que ha tenido el desarrollo del protocolos H.323, SIP, H.248 ò (Megago), y las redes IP sobre WDM, en el ámbito de las tecnologías relacionadas con las redes y los servicios IP, en pleno escenario de convergencia tecnológica.
Durante el desarrollo de la investigación, se dará una definición de los protocolos y se indicará sobre las características, arquitectura y componentes de los protocolos antes descritos. Se dará una visión general de las posibles aplicaciones de esta tecnología en convergencia; se dará un repaso muy breve a las principales líneas de trabajo y los esfuerzos de estandarización en los frentes de interoperabilidad en un escenario de necesaria convivencia con tecnologías tradicionales.
En esta investigación, no podemos pretender abarcar todo el dinamismo de las tecnologías relacionadas, de manera que cuando se hable de tendencias o líneas de trabajo, e incluso aplicaciones o servicios de esas tecnologías, se plantearan de forma genérica con la única intención de proporcionar una visión lo más amplia posible de la tecnología y el escenario donde se presenta.
La responsabilidad es ahora de los operadores el usar sus existentes redes de fibra para satisfacer lo que el mercado necesita. Desde 1980, SONET/SDH ha cubierto estas necesidades suministrando protección.
Esto mientras soporta una mezcla transparente y flexible de protocolos de tráfico incluido IP, Fiber Channel, Ethernet y GFP. Mientras que el despliegue de las redes WDM (Múltiplexación por división de onda) durante la década siguiente sirvieron para incrementar el ancho de banda de la fibra existente, escasean severamente las capacidades de protección y de gestión inherentes a la tecnología SONET/SDH.
También el desarrollo WDM vino con un nuevo y completo conjunto de Elementos de Red (NE - Network Elements) incluidos amplificadores, conmutadores, multiplexadores y desmultiplexadores ópticos, los cuales introducen un subnivel en la red mereciendo una monitorización constante para garantizar el fallo de tráfico libre.
La meta de la OTN (Optical Transport Network), es combinar los beneficios de la tecnología SONET/SDH con el aumento del ancho de banda del WDM. En pocas palabras, OTN aplicará la funcionalidad de la Operación, Administración, Mantenimiento y Aprovisionamiento del SONET/SDH a las redes ópticas WDM. Este OTN recientemente desarrollada se especifica en la ITU-T G.709 Network Node Interface for Optical Transport Network (OTN). Esta recomendación – a veces referida como Digital Wrapper (DW) – toma la tecnología SONET/SDH de una única longitud de onda como un paso a las redes transparentes gestionables de longitud de onda de muchas longitudes de onda. El FEC (Forward Error Correction) añade una característica adicional a la OTN ofreciendo el potencial para los operadores de red para reducir el número de regeneradores usados lo que a su vez reduce los costes de la red.
CAPITULO 1
INTEGRACIÓN DE IP SOBRE CANALES WDM
1. INTEGRACIÓN DE IP SOBRE CANALES WDM.
El estudio de la integración de IP sobre redes ópticas. Estudiando la encapsulación de los distintos niveles IP sobre los distintos niveles WDM. Analizando la gestión, la funcionalidad y arquitectura de las redes ópticas.
En un principio lo que se quiere exponer el estado actual y el desarrollo futuro de equipos y redes IP, de cómo WDM propone las medidas para implementar estas funciones y mejora la funcionabilidad de las redes.
Con este trabajo se pretende introducir aspectos importantes a tener en cuenta cuando se considera la posibilidad de IP sobre WDM. Provee un buen fondo para cualquiera que trabaje en lo concerniente a la reducción de la cabecera necesaria para el transporte de paquetes IP en canales ópticos. Uno de los aspectos a tratar es la de tener una perspectiva de la capa IP. Mirar lo que está disponible en términos de funcionalidad, software y hardware en la capa IP.
IPv6 es probablemente la mejor elección en las futuras redes IP sobre WDM. Esta investigación, muestra también el desarrollo al que tienden los routers y valorar los router Gigabit, así como estos forman la base para las redes de transporte IP sobre WDM. Algunos cambios en configuraciones de hardware están también identificados, esto es necesario a la hora de hacer routers capaces de manejar paquetes de velocidades de Gigabits, como usar switch en vez de buses. Esto muestra que para clasificar los paquetes IP dentro del flujo y conmutándolos en las capas inferiores en vez de enrutarlos, mirando las tablas de enrutamiento en cada nodo puede reducir significativamente la latencia de la red.
Una técnica de la que hablaremos en particular es MPLS (Multi Protocol Label Switching) la cual fue propuesta por la IETF (Internet Engineering Task Force) y ya esta implementada en muchos routers. MPLS tiene la ventaja de aliviar el peso de las largas tablas de enrutamiento en los routers y al mismo tiempo soporta la realización de funcionalidades de la red, como VPN (Virtual Private Network) y CoS (Class of Service). Las técnicas que se necesitan para la integración de la capa IP sobre la capa WDM, dando una visión general de los diferentes métodos de encapsulamiento de los paquetes IP preparándolos para ser transportados en una longitud de onda.
En la adaptación de los paquetes IP sobre WDM se evalúa los diferentes mecanismos de encapsulación de la cantidad de cabecera necesaria para transportar los paquetes IP.
El trabajo muestra algunas de las posibilidades que WDM puede dar en términos de funcionalidad. Tres diferentes posibilidades se puede dar para soportar CoS usando longitudes de onda:
Mejora en la capacidad de los nodos y por tanto CoS para sobre aprovisionamiento.
Paso por los routers a través de enrutamiento de longitud de onda así como el decremento del retraso en las redes.
Uso de longitudes de onda como etiquetas para la clasificación de CoS.
También veremos las diferentes opciones de conexión cruzada y enrutado de los flujos IP la ayuda de las longitudes de onda y por consiguiente obteniendo una menor latencia en la red. En este, se identifican las tendencias predominantes en IP sobre WDM. Estas tendencias discutidas son:
Routers más rápidos à 2,5 Gb/s de hoy a los 10 Gb/s.
Aumento del número de longitudes de onda à 32 sistemas de longitudes de onda a 200 sistemas de canal.
Moviendo el enrutamiento a las capas inferiores y aminorando la latencia de las redes.
Nuevos protocolos dedicados a adaptar IP sobre WDM.
Menor conversión de protocolos entre las distintas partes de la red.
1.1. WDM (Múltiplexación por División de Onda).
La tecnología WDM permite transmitir múltiples longitudes de onda en una misma fibra óptica simultáneamente. El rango de longitudes de onda utilizado en la fibra puede ser dividido en varias bandas, Cada uno de estos canales, a distinta longitud de onda, puede transmitir señales de diferentes velocidades y formatos.
WDM, incrementa la capacidad de transmisión en el medio físico (fibra óptica), asignando a las señales ópticas de entrada, específicas frecuencias de luz (longitudes de onda), dentro de una banda de frecuencias inconfundible. Una manera de asemejar esta multiplexación es la transmisión de una estación de radio, en diferentes longitudes de onda sin interferir una con otra (ver Figura # 1),
porque cada canal es transmitido a una frecuencia diferente, la que puede seleccionarse desde un sintonizador (Tuner). Otra forma de verlo, es que cada canal corresponde a un diferente color, y varios canales forman un "arco iris".
En un sistema WDM, cada longitud de onda es enviada a la fibra y las señales son demultiplexadas en el receptor. En este tipo de sistema, cada señal de entrada es independiente de las otras. De esta manera, cada canal tiene su propio ancho de banda dedicado; llegando todas las señales a destino al mismo tiempo.
La gran potencia de transmisión requerida por las altas tasas de bit (Bit Rates) introduce efectos no-lineales que pueden afectar la calidad de las formas de onda de las señales.
La diferencia entre WDM y Dense WDM (DWDM) es fundamentalmente el rango. DWDM espacia las longitudes de onda más estrechamente que WDM, por lo tanto tiene una gran capacidad total. Para sistemas DWDM (Dense Wavelength Division Multiplexing) el intervalo entre canales es igual o menor que 3.2 [nm]. La ITU (International Telecommunication Union) ha estandarizado este espaciamiento, normalizando una mínima separación de longitudes de onda de 100 [GHz] (o 0.8 [nm]), también esta la posibilidad de separación de 200 [GHz] (o 1.6 [nm]) y 400 [GHz] (3.2 [nm]).
Nota: WDM y DWDM utilizan fibra mono-modo para enviar múltiples Lightwaves de diferentes frecuencias. No confundir con una transmisión multi-modo, en la cual la luz es introducida en una fibra a diferentes ángulos, resultando diferentes "modos" de luz. Una sola longitud de onda es usada en transmisión multi-modo.
La principal ventaja de DWDM es que ofrece una capacidad de transmisión prácticamente ilimitada. Aparte del ancho de banda, DWDM ofrece otras ventajas:
Transparencia. Debido a que DWDM es una arquitectura de capa física, puede soportar transparencia en el formato de señal, tales como ATM, GbE (Gigabit Ethernet), ESCON, TDM, IP y Fibre Channel, con interfaces abiertas sobre una capa física común. Por lo mismo, puede soportar distintos Bit Rates.
Escalabilidad. DWDM puede apalancar la abundancia de fibra oscura en redes metropolitanas y empresariales, para rápidamente satisfacer la demanda de capacidad en enlaces punto-a-punto y en tramos de anillos ya existentes.
Iniciación dinámica. Rápida, simple y abastecimiento dinámico en las conexiones de redes, dada la habilidad de proveedores de proveer servicios de alto ancho de banda en días, antes que en meses.
El auge de la fibra óptica está estrechamente ligado al uso de una región específica del espectro óptico donde la atenuación óptica es baja. Estas regiones, llamadas ventanas, se ubican en áreas de alta absorción. Los primeros sistemas en ser desarrollados operan alrededor de los 850 [nm], la primera ventana en fibra óptica basada en Silica. Una segunda ventana (Banda S), a 1310 [nm], se comprobó que era superior, por el hecho de tener menor atenuación. La tercera ventana (Banda C), a 1550 [nm], posee la menor pérdida óptica de manera uniforme. Hoy en día, una cuarta ventana (Banda L), cerca de los 1625 [nm], está en bajo desarrollo y en sus primeros usos. Estas cuatro ventanas se pueden observar en el espectro electromagnético mostrado en la Figura C.2.

1.2 Evolución de la tecnología DWDM.
Los primeros comienzos de WDM, a fines de la década de los 80’s, utilizaban dos longitudes de onda ampliamente espaciadas en las regiones de los 1310 [nm] y 1550 [nm] (o 850 [nm] y 1310 [nm]), algunas veces llamadas WDM banda ancha (Wideband WDM). A comienzos de los 90’s floreció una segunda generación de WDM, algunas veces llamada WDM Banda estrecha (Narrowband WDM), en la cual se utilizaban entre dos a ocho canales, que estaban separados a intervalos de aproximadamente 400 [GHz] en la ventana de los 1550 [nm].
A mediados de los 90’s, emergieron los sistemas DWDM con 16 a 40 canales con una separación entre ellos de 100 [GHz] y 200 [GHz]. A fines de los 90’s, los sistemas DWDM evolucionaros, a tal punto que eran capaz de utilizar de 64 a 160 canales paralelos, empaquetados densamente a intervalos de 50 [GHz] y 25 [GHz]. La Figura C.3 muestra la evolución de esta tecnología, que puede ser vista como un incremento en el número de longitudes de onda acompañada de una disminución en el espaciamiento entre las mismas. Con el crecimiento en la densidad de longitudes de onda, los sistemas también avanzaron en la flexibilidad de configuración, por medio de funciones de subida/bajada (Add/Drop) y capacidades de administración.
El incremento de la densidad de canales, como resultado de la tecnología DWDM, tuvo un impacto dramático en la capacidad de transmisión en la fibra. En 1995, cuando los primeros sistemas a 10 [Gbps] fueron demostrados, la tasa de incremento de la capacidad fue de un múltiplo lineal de cuatro cada cuatro años a cuatro cada año (ver Figura C.4).

"Investigaciones de laboratorio han podido realizar experimentos para transmitir 1022 l en una misma fibra, sistema denominado Ultra Dense Wavelength Division Multiplexing (UDWDM), con una separación entre canales de 10 [GHz]".
1.3 Funcionamiento de un sistema DWDM.
En su núcleo, DWDM involucra un pequeño número de funciones de capa física. Estas son bosquejadas en la Figura C.5, la que muestra un sistema DWDM de cuatro canales. Cada canal óptico ocupa su propia longitud de onda.
Figura C.5. Esquema funcional DWDM.
El sistema ejecuta las siguientes funciones principales:
Generación de la señal. La fuente, un láser de estado sólido, puede proveer luz estable con un específico ancho de banda estrecho, que transmite la información digital, modulada por una señal análoga.
Combinación de señales. Modernos sistemas DWDM emplean multiplexores para combinar las señales. Existe una pérdida asociada con multiplexión y demultiplexión. Esta pérdida es dependiente del número de canales, pero puede ser disminuida con el uso de amplificadores ópticos, los que amplifican todas las longitudes de onda directamente, sin conversión eléctrica.
Transmisión de señales. Los efectos de Crosstalk y degradación de señal óptica o pérdida pueden ser calculados en una transmisión óptica. Estos efectos pueden ser minimizados controlando algunas variables, tales como: espaciamiento de canales, tolerancia de longitudes de onda, y niveles de potencia del láser. Sobre un enlace de transmisión, la señal puede necesitar ser amplificada ópticamente.
Separación de señales recibidas. En el receptor, las señales multiplexadas tienen que ser separadas. Aunque esta tarea podría parecer el caso opuesto a la combinación de señales, ésta es hoy, en día, difícil técnicamente.
Recepción de señales. La señal demultiplexada es recibida por un fotodetector
Parece claro que se ve venir un periodo de convivencia de ambas soluciones, de manera que nos encontramos con varias iniciativas conjuntas que persiguen un escenario donde la interoperabilidad constituirá un requisito absolutamente imprescindible; todo pensado en un entorno de Comunicación Universal e independiente del medio o dispositivo que se utilice en cada momento para acceder a los servicios.
El objetivo de la investigación es ofrecer una breve descripción de las características generales, motivación y alcance que ha tenido el desarrollo del protocolos H.323, SIP, H.248 ò (Megago), y las redes IP sobre WDM, en el ámbito de las tecnologías relacionadas con las redes y los servicios IP, en pleno escenario de convergencia tecnológica.
Durante el desarrollo de la investigación, se dará una definición de los protocolos y se indicará sobre las características, arquitectura y componentes de los protocolos antes descritos. Se dará una visión general de las posibles aplicaciones de esta tecnología en convergencia; se dará un repaso muy breve a las principales líneas de trabajo y los esfuerzos de estandarización en los frentes de interoperabilidad en un escenario de necesaria convivencia con tecnologías tradicionales.
En esta investigación, no podemos pretender abarcar todo el dinamismo de las tecnologías relacionadas, de manera que cuando se hable de tendencias o líneas de trabajo, e incluso aplicaciones o servicios de esas tecnologías, se plantearan de forma genérica con la única intención de proporcionar una visión lo más amplia posible de la tecnología y el escenario donde se presenta.
La responsabilidad es ahora de los operadores el usar sus existentes redes de fibra para satisfacer lo que el mercado necesita. Desde 1980, SONET/SDH ha cubierto estas necesidades suministrando protección.
Esto mientras soporta una mezcla transparente y flexible de protocolos de tráfico incluido IP, Fiber Channel, Ethernet y GFP. Mientras que el despliegue de las redes WDM (Múltiplexación por división de onda) durante la década siguiente sirvieron para incrementar el ancho de banda de la fibra existente, escasean severamente las capacidades de protección y de gestión inherentes a la tecnología SONET/SDH.
También el desarrollo WDM vino con un nuevo y completo conjunto de Elementos de Red (NE - Network Elements) incluidos amplificadores, conmutadores, multiplexadores y desmultiplexadores ópticos, los cuales introducen un subnivel en la red mereciendo una monitorización constante para garantizar el fallo de tráfico libre.
La meta de la OTN (Optical Transport Network), es combinar los beneficios de la tecnología SONET/SDH con el aumento del ancho de banda del WDM. En pocas palabras, OTN aplicará la funcionalidad de la Operación, Administración, Mantenimiento y Aprovisionamiento del SONET/SDH a las redes ópticas WDM. Este OTN recientemente desarrollada se especifica en la ITU-T G.709 Network Node Interface for Optical Transport Network (OTN). Esta recomendación – a veces referida como Digital Wrapper (DW) – toma la tecnología SONET/SDH de una única longitud de onda como un paso a las redes transparentes gestionables de longitud de onda de muchas longitudes de onda. El FEC (Forward Error Correction) añade una característica adicional a la OTN ofreciendo el potencial para los operadores de red para reducir el número de regeneradores usados lo que a su vez reduce los costes de la red.
CAPITULO 1
INTEGRACIÓN DE IP SOBRE CANALES WDM
1. INTEGRACIÓN DE IP SOBRE CANALES WDM.
El estudio de la integración de IP sobre redes ópticas. Estudiando la encapsulación de los distintos niveles IP sobre los distintos niveles WDM. Analizando la gestión, la funcionalidad y arquitectura de las redes ópticas.
En un principio lo que se quiere exponer el estado actual y el desarrollo futuro de equipos y redes IP, de cómo WDM propone las medidas para implementar estas funciones y mejora la funcionabilidad de las redes.
Con este trabajo se pretende introducir aspectos importantes a tener en cuenta cuando se considera la posibilidad de IP sobre WDM. Provee un buen fondo para cualquiera que trabaje en lo concerniente a la reducción de la cabecera necesaria para el transporte de paquetes IP en canales ópticos. Uno de los aspectos a tratar es la de tener una perspectiva de la capa IP. Mirar lo que está disponible en términos de funcionalidad, software y hardware en la capa IP.
IPv6 es probablemente la mejor elección en las futuras redes IP sobre WDM. Esta investigación, muestra también el desarrollo al que tienden los routers y valorar los router Gigabit, así como estos forman la base para las redes de transporte IP sobre WDM. Algunos cambios en configuraciones de hardware están también identificados, esto es necesario a la hora de hacer routers capaces de manejar paquetes de velocidades de Gigabits, como usar switch en vez de buses. Esto muestra que para clasificar los paquetes IP dentro del flujo y conmutándolos en las capas inferiores en vez de enrutarlos, mirando las tablas de enrutamiento en cada nodo puede reducir significativamente la latencia de la red.
Una técnica de la que hablaremos en particular es MPLS (Multi Protocol Label Switching) la cual fue propuesta por la IETF (Internet Engineering Task Force) y ya esta implementada en muchos routers. MPLS tiene la ventaja de aliviar el peso de las largas tablas de enrutamiento en los routers y al mismo tiempo soporta la realización de funcionalidades de la red, como VPN (Virtual Private Network) y CoS (Class of Service). Las técnicas que se necesitan para la integración de la capa IP sobre la capa WDM, dando una visión general de los diferentes métodos de encapsulamiento de los paquetes IP preparándolos para ser transportados en una longitud de onda.
En la adaptación de los paquetes IP sobre WDM se evalúa los diferentes mecanismos de encapsulación de la cantidad de cabecera necesaria para transportar los paquetes IP.
El trabajo muestra algunas de las posibilidades que WDM puede dar en términos de funcionalidad. Tres diferentes posibilidades se puede dar para soportar CoS usando longitudes de onda:
Mejora en la capacidad de los nodos y por tanto CoS para sobre aprovisionamiento.
Paso por los routers a través de enrutamiento de longitud de onda así como el decremento del retraso en las redes.
Uso de longitudes de onda como etiquetas para la clasificación de CoS.
También veremos las diferentes opciones de conexión cruzada y enrutado de los flujos IP la ayuda de las longitudes de onda y por consiguiente obteniendo una menor latencia en la red. En este, se identifican las tendencias predominantes en IP sobre WDM. Estas tendencias discutidas son:
Routers más rápidos à 2,5 Gb/s de hoy a los 10 Gb/s.
Aumento del número de longitudes de onda à 32 sistemas de longitudes de onda a 200 sistemas de canal.
Moviendo el enrutamiento a las capas inferiores y aminorando la latencia de las redes.
Nuevos protocolos dedicados a adaptar IP sobre WDM.
Menor conversión de protocolos entre las distintas partes de la red.
1.1. WDM (Múltiplexación por División de Onda).
La tecnología WDM permite transmitir múltiples longitudes de onda en una misma fibra óptica simultáneamente. El rango de longitudes de onda utilizado en la fibra puede ser dividido en varias bandas, Cada uno de estos canales, a distinta longitud de onda, puede transmitir señales de diferentes velocidades y formatos.
WDM, incrementa la capacidad de transmisión en el medio físico (fibra óptica), asignando a las señales ópticas de entrada, específicas frecuencias de luz (longitudes de onda), dentro de una banda de frecuencias inconfundible. Una manera de asemejar esta multiplexación es la transmisión de una estación de radio, en diferentes longitudes de onda sin interferir una con otra (ver Figura # 1),
porque cada canal es transmitido a una frecuencia diferente, la que puede seleccionarse desde un sintonizador (Tuner). Otra forma de verlo, es que cada canal corresponde a un diferente color, y varios canales forman un "arco iris".

En un sistema WDM, cada longitud de onda es enviada a la fibra y las señales son demultiplexadas en el receptor. En este tipo de sistema, cada señal de entrada es independiente de las otras. De esta manera, cada canal tiene su propio ancho de banda dedicado; llegando todas las señales a destino al mismo tiempo.
La gran potencia de transmisión requerida por las altas tasas de bit (Bit Rates) introduce efectos no-lineales que pueden afectar la calidad de las formas de onda de las señales.
La diferencia entre WDM y Dense WDM (DWDM) es fundamentalmente el rango. DWDM espacia las longitudes de onda más estrechamente que WDM, por lo tanto tiene una gran capacidad total. Para sistemas DWDM (Dense Wavelength Division Multiplexing) el intervalo entre canales es igual o menor que 3.2 [nm]. La ITU (International Telecommunication Union) ha estandarizado este espaciamiento, normalizando una mínima separación de longitudes de onda de 100 [GHz] (o 0.8 [nm]), también esta la posibilidad de separación de 200 [GHz] (o 1.6 [nm]) y 400 [GHz] (3.2 [nm]).
Nota: WDM y DWDM utilizan fibra mono-modo para enviar múltiples Lightwaves de diferentes frecuencias. No confundir con una transmisión multi-modo, en la cual la luz es introducida en una fibra a diferentes ángulos, resultando diferentes "modos" de luz. Una sola longitud de onda es usada en transmisión multi-modo.
La principal ventaja de DWDM es que ofrece una capacidad de transmisión prácticamente ilimitada. Aparte del ancho de banda, DWDM ofrece otras ventajas:
Transparencia. Debido a que DWDM es una arquitectura de capa física, puede soportar transparencia en el formato de señal, tales como ATM, GbE (Gigabit Ethernet), ESCON, TDM, IP y Fibre Channel, con interfaces abiertas sobre una capa física común. Por lo mismo, puede soportar distintos Bit Rates.
Escalabilidad. DWDM puede apalancar la abundancia de fibra oscura en redes metropolitanas y empresariales, para rápidamente satisfacer la demanda de capacidad en enlaces punto-a-punto y en tramos de anillos ya existentes.
Iniciación dinámica. Rápida, simple y abastecimiento dinámico en las conexiones de redes, dada la habilidad de proveedores de proveer servicios de alto ancho de banda en días, antes que en meses.
El auge de la fibra óptica está estrechamente ligado al uso de una región específica del espectro óptico donde la atenuación óptica es baja. Estas regiones, llamadas ventanas, se ubican en áreas de alta absorción. Los primeros sistemas en ser desarrollados operan alrededor de los 850 [nm], la primera ventana en fibra óptica basada en Silica. Una segunda ventana (Banda S), a 1310 [nm], se comprobó que era superior, por el hecho de tener menor atenuación. La tercera ventana (Banda C), a 1550 [nm], posee la menor pérdida óptica de manera uniforme. Hoy en día, una cuarta ventana (Banda L), cerca de los 1625 [nm], está en bajo desarrollo y en sus primeros usos. Estas cuatro ventanas se pueden observar en el espectro electromagnético mostrado en la Figura C.2.

1.2 Evolución de la tecnología DWDM.
Los primeros comienzos de WDM, a fines de la década de los 80’s, utilizaban dos longitudes de onda ampliamente espaciadas en las regiones de los 1310 [nm] y 1550 [nm] (o 850 [nm] y 1310 [nm]), algunas veces llamadas WDM banda ancha (Wideband WDM). A comienzos de los 90’s floreció una segunda generación de WDM, algunas veces llamada WDM Banda estrecha (Narrowband WDM), en la cual se utilizaban entre dos a ocho canales, que estaban separados a intervalos de aproximadamente 400 [GHz] en la ventana de los 1550 [nm].
A mediados de los 90’s, emergieron los sistemas DWDM con 16 a 40 canales con una separación entre ellos de 100 [GHz] y 200 [GHz]. A fines de los 90’s, los sistemas DWDM evolucionaros, a tal punto que eran capaz de utilizar de 64 a 160 canales paralelos, empaquetados densamente a intervalos de 50 [GHz] y 25 [GHz]. La Figura C.3 muestra la evolución de esta tecnología, que puede ser vista como un incremento en el número de longitudes de onda acompañada de una disminución en el espaciamiento entre las mismas. Con el crecimiento en la densidad de longitudes de onda, los sistemas también avanzaron en la flexibilidad de configuración, por medio de funciones de subida/bajada (Add/Drop) y capacidades de administración.
El incremento de la densidad de canales, como resultado de la tecnología DWDM, tuvo un impacto dramático en la capacidad de transmisión en la fibra. En 1995, cuando los primeros sistemas a 10 [Gbps] fueron demostrados, la tasa de incremento de la capacidad fue de un múltiplo lineal de cuatro cada cuatro años a cuatro cada año (ver Figura C.4).

"Investigaciones de laboratorio han podido realizar experimentos para transmitir 1022 l en una misma fibra, sistema denominado Ultra Dense Wavelength Division Multiplexing (UDWDM), con una separación entre canales de 10 [GHz]".
1.3 Funcionamiento de un sistema DWDM.
En su núcleo, DWDM involucra un pequeño número de funciones de capa física. Estas son bosquejadas en la Figura C.5, la que muestra un sistema DWDM de cuatro canales. Cada canal óptico ocupa su propia longitud de onda.
Figura C.5. Esquema funcional DWDM.
El sistema ejecuta las siguientes funciones principales:
Generación de la señal. La fuente, un láser de estado sólido, puede proveer luz estable con un específico ancho de banda estrecho, que transmite la información digital, modulada por una señal análoga.
Combinación de señales. Modernos sistemas DWDM emplean multiplexores para combinar las señales. Existe una pérdida asociada con multiplexión y demultiplexión. Esta pérdida es dependiente del número de canales, pero puede ser disminuida con el uso de amplificadores ópticos, los que amplifican todas las longitudes de onda directamente, sin conversión eléctrica.
Transmisión de señales. Los efectos de Crosstalk y degradación de señal óptica o pérdida pueden ser calculados en una transmisión óptica. Estos efectos pueden ser minimizados controlando algunas variables, tales como: espaciamiento de canales, tolerancia de longitudes de onda, y niveles de potencia del láser. Sobre un enlace de transmisión, la señal puede necesitar ser amplificada ópticamente.
Separación de señales recibidas. En el receptor, las señales multiplexadas tienen que ser separadas. Aunque esta tarea podría parecer el caso opuesto a la combinación de señales, ésta es hoy, en día, difícil técnicamente.
Recepción de señales. La señal demultiplexada es recibida por un fotodetector
No hay comentarios:
Publicar un comentario